Homotopy theory of labelled symmetric precubical sets
نویسندگان
چکیده
This paper is the third paper of a series devoted to higherdimensional transition systems. The preceding paper proved the existence of a left determined model structure on the category of cubical transition systems. In this sequel, it is proved that there exists a model category of labelled symmetric precubical sets which is Quillen equivalent to the Bousfield localization of this left determined model category by the cubification functor. The realization functor from labelled symmetric precubical sets to cubical transition systems which was introduced in the first paper of this series is used to establish this Quillen equivalence. However, it is not a left Quillen functor. It is only a left adjoint. It is proved that the two model categories are related to each other by a zig-zag of Quillen equivalences of length two. The middle model category is still the model category of cubical transition systems, but with an additional family of generating cofibrations. The weak equivalences are closely related to bisimulation. Similar results are obtained by restricting the constructions to the labelled symmetric precubical sets satisfying the HDA paradigm.
منابع مشابه
Combinatorics of labelling in higher-dimensional automata
The main idea for interpreting concurrent processes as labelled precubical sets is that a given set of n actions running concurrently must be assembled to a labelled n-cube, in exactly one way. The main ingredient is the non-functorial construction called the labelled directed coskeleton. It is defined as a subobject of the labelled coskeleton, the latter coinciding in the unlabelled case with ...
متن کاملHomotopical Equivalence of Combinatorial and Categorical Semantics of Process Algebra
It is possible to translate a modified version of K. Worytkiewicz’s combinatorial semantics of CCS (Milner’s Calculus of Communicating Systems) in terms of labelled precubical sets into a categorical semantics of CCS in terms of labelled flows using a geometric realization functor. It turns out that a satisfactory semantics in terms of flows requires to work directly in their homotopy category ...
متن کاملSome collapsing operations for 2-dimensional precubical sets
In this paper, we consider 2-dimensional precubical sets, which can be used to model systems of two concurrently executing processes. From the point of view of concurrency theory, two precubical sets can be considered equivalent if their geometric realizations have the same directed homotopy type relative to the extremal elements in the sense of P. Bubenik. We give easily verifiable conditions ...
متن کاملGlobular realization and cubical underlying homotopy type of time flow of process algebra
We construct a small realization as flow of every precubical set (modeling for example a process algebra). The realization is small in the sense that the construction does not make use of any cofibrant replacement functor and of any transfinite construction. In particular, if the precubical set is finite, then the corresponding flow has a finite globular decomposition. Two applications are give...
متن کاملDirected Homology Theories and Eilenberg-Steenrod Axioms
In this paper, we define and study a homology theory, that we call “natural homology”, which associates a natural system of abelian groups to every space in a large class of directed spaces and precubical sets. We show that this homology theory enjoys many important properties, as an invariant for directed homotopy. Among its properties, we show that subdivided precubical sets have the same hom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014